Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »


 

We want to evaluate the use of Causality algorithms as described in “Causal Inference in Statistics” by Judea Pearl et al.

-        Survey latest techniques and research for Causal Modeling and Causal Inferencing

-        Develop tools for Causal Modeling  including:

o   Statistical Independence and Conditional Independence Tests

o   Causal Modeling representation

o   Model Identifiability Detection

o   Interventional Calculus solver

o   Counterfactual Calculus solver

o   Causal Modeling User Interface

-        Identify multiple datasets for real-world analysis

-        Conduct analysis of selected datasets and compare with known ground truth where available

-        Publish paper(s) on the research

-        Test and document code for general release

 

The successful applicants will demonstrate:

-        Proficiency with probability and statistics

-        Understanding of the basic concepts and techniques of Causality and Causal Inference

-        Experience with Machine Learning algorithms

  • No labels