Project Description
SVD has many applications. For example, SVD could be applied to natural language processing for latent semantic analysis (LSA). LSA starts with a matrix whose rows represent words, columns represent documents, and matrix values (elements) are counts of the word in the document. It then applies SVD to the input matrix, and uses a subset of most significant singular vectors and corresponding singular values to map words and documents into a new space, called ‘latent semantic space’, where documents are placed near each other measured by co-occurrence of words, even if those words never co-occurred in the training corpus.
...