Convert Generalized Neural Network bundle (GNN) to native Tensorflow 2.0
This project is already taken and is no longer available for the 2023 HPCC Systems Intern Program
This project is available as a student work experience opportunity with HPCC Systems. Curious about other projects we are offering? Take a look at our Ideas List.
Student work experience opportunities also exist for students who want to suggest their own project idea. Project suggestions must be relevant to HPCC Systems and of benefit to our open source community.Â
Find out about the HPCC Systems Summer Internship Program.
Project Description
Neural Networks have become a key mechanism for the analysis of many types of data. Â In particular they have been found to be very effective for the analysis of complex datasets such as images, video, and time-series, where classical methods have proven inadequate. The Generalized Neural Network Bundle (GNN) allows the ECL programmer to combine the parallel processing power of HPCC Systems with the powerful Neural Network capabilities of Keras and Tensorflow. The GNN bundle attaches each node in the HPCC Systems cluster to an independent Keras/Tensorflow environment and coordinates among those environments to provide a distributed environment that can parallelize all phases of Keras/Tensorflow usage. Most importantly, this coordination is transparent to the GNN user, who can program as if running on a single node.
Our GNN bundle was originally developed against the Tensorflow 1.5 interface.  We currently support Tensorflow 2.0 using a Tensorflow compatibility mode.  The candidate for this project will adapt GNN to directly use the Tensorflow 2.0 interface in order to maximize  performance, round out any functionality gaps, and fully support all Tensorflow pre-trained models.  In particular, we want to ensure that we provide effective support for GPUs, and full support for recent neural network models.
The successful candidate will have a strong knowledge of neural networks, and experience with Tensorflow. Â This project includes coding, testing, and documenting the results.
If you are interested in this project, please contact the mentor shown below.
Â
Mentor | Lili Xu Backup Mentor: Roger Dev |
Skills needed |
|
Other resources |
|
All pages in this wiki are subject to our site usage guidelines.